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Cusp-scaling behavior in fractal dimension of chaotic scattering
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A topological bifurcation in chaotic scattering is characterized by a sudden change in the topology of the
infinite set of unstable periodic orbits embedded in the underlying chaotic invariant set. We uncover a scaling
law for the fractal dimension of the chaotic set for such a bifurcation. Our analysis and numerical computations
in both two- and three-degrees-of-freedom systems suggest a striking feature associated with these subtle
bifurcations: the dimension typically exhibits a sharp, cusplike local minimum at the bifurcation.
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The development of nonlinear dynamics has led to
proved understanding of important physical processes, s
as chaotic scattering@1,2#. A scattering process is chaotic if
exhibits a sensitive dependence on initial conditions in
sense that, a small change in the input variables before
scattering can result in a large change in some output v
ables after the scattering. Apparently, in a scattering proc
every physical trajectory is unbounded, but chaos arises
cause of a bounded chaotic set~chaotic saddle! in the scat-
tering region where, for instance, the interaction betwe
particles and potential occurs, as in a potential scatte
system. Chaotic saddles are nonattracting and, dynamic
they lead to transient chaos@3#. Chaotic scattering is thus th
physical manifestation of transient chaos in open Ham
tonian systems, which occurs in a variety of physical co
texts @1#.

An issue of fundamental importance in the study of ch
otic scattering is to understand how the scattering dynam
changes characteristically as a system parameter is va
There are three distinct classes of bifurcations in cha
scattering:~1! routes to chaotic scattering from regular sc
tering, ~2! metamorphic bifurcations in which the chaot
saddle suddenly changes its characteristics, and~3! topologi-
cal bifurcations in which the topology of the chaotic sadd
changes. Routes to chaotic scattering have been well d
mented, including abrupt bifurcations@4,5# and saddle-cente
bifurcation followed by a cascade of period-doubling bifu
cations@6#. There have also been efforts to study metam
phic bifurcations in chaotic scattering, such as crisis@7#. To-
pological bifurcations, characterized by topological chan
in the subsets of infinite number of unstable periodic orb
~UPOs! embedded in the chaotic saddles, on the other ha
have not been well understood. One example of topolog
bifurcation is the massive bifurcation@8#. This type of bifur-
cations issubtlebut it is expected to be important in hig
dimensions, as they can lead to distinct, physically obse
able scattering phenomena@9#. While there have been quan
titative scaling results concerning both routes to chaotic s
tering @4,10# and metamorphic bifurcation@7#, the
understanding of topological bifurcations in chaotic scatt
ing remains largely at the qualitative level@8#, particularly in
high dimensions@9#.

In this paper, we present a scaling law for the frac
dimension of the chaotic saddle in a topological bifurcat
that appears to be typical in both two-@8# and three-degrees
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of-freedom~DOF! @9# Hamiltonian systems. We focus on th
fractal dimension because of its importance in shaping ph
cally measurable quantities such as scattering functions,
because of the fact that most analytic scaling results ass
ated with various routes to chaotic scattering concern fra
dimension but, to our knowledge, there has been none in
context of topological bifurcations. Due to the subtlety of
topological bifurcation, obtaining quantitative scaling law
even numerically, is highly nontrivial. To be concrete, w
state our main result in the context of potential scatteri
with the particle energyE as the bifurcation parameter. Le
Ec be the critical energy value at which a topological bifu
cation occurs in the sense that, a class of infinite numbe
UPOs is destroyed and replaced by another. The princ
result of this paper is then that, near the topological bifur
tion, the fractal dimension of the set of singularities in a
scattering function~to be described below! scales with the
energy in the following way:

D2Dc;uE2EcuDc, ~1!

whereDc is the dimension value at the bifurcation point.The
remarkable observation is that the dimension-versus-ene
curve exhibits a cusplike minimum at the bifurcation. We
establish Eq.~1! by a scaling argument, and we provide n
merical verification using a class of 2-DOF scattering s
tems. We also argue that the scaling law should hold
3-DOF systems. Our result is interesting, as it represents
first, general, quantitative scaling result for topological bifu
cation of chaotic scattering.

To derive the scaling law~1!, we first consider 2-DOF
potential scattering systems. Our idealized, albeit represe
tive, scattering system consists of three potential hills in
plane, as shown in Fig. 1. The heightsE1 , E2, and E3 of
hills 1, 2, and 3 satisfyE1 ,E2.E3. Assume that hill 3 has a
circularly symmetric, quadratic maximum, and that it is clo
to the line connecting hills 1 and 2 so that the angleu in the
triangle formed by the centers of all three hills is greater th
90 °, as shown in Fig. 1~a!. When the particle energyE is
slightly aboveE3, a trapped particle can move back and for
between hills 1 and 2 following three different paths@6#: h, i,
and j, as shown in Fig. 1~a!. When the energy drops below
E3, the path with greater deflection by crossing near the c
ter of hill 3, pathj, is destroyed because of the appearance
a forbidden region around the center of hill 3, and is replac
©2002 The American Physical Society01-1
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by two pathsk, between hills 1 and 3 and between hills 2 a
3, as shown in Fig. 1~b!. For E'E3, the UPOs that form the
skeleton of the chaotic saddle are thus composed of
quences of pathsh, i, j, andk. A topological bifurcation@8#
occurs atEc5E3, at which the class of an infinite number o
UPOs containing pathj is destroyed and replaced by anoth
class of infinite number of UPOs that contain pathsk.

We focus on a fractal dimension that is physically mo
relevant: the dimensionD of the set of singularities in a
scattering function. Suppose that we launch particles tow
the scatterer from a line outside the scattering region
measure a dynamical variable characterizing the outgo
particles after the scattering~e.g., scattering angle!, as a
function of a variable characterizing the incoming partic
before the scattering~e.g., impact parameter!. Due to chaos,
such a scattering function typically contains an infinite nu
ber of singularities that constitute a fractal set, which is
set of intersecting points between the stable manifold of
chaotic saddle and the line@11#. Dynamically, the fractal se
of singularities is constructed by successive interactions
the particles with the potential hills. For example, consid
the intervals of the line corresponding to particles that a
first deflected by hill 1, as shown in Fig. 2. Three subint
vals of this interval are then deflected by the other hills, w
gaps between them corresponding to particles that are
tered to infinity right after the first interaction with hill 1
When E.Ec , these three subintervals are defined by p
ticles that go from hill 1 to hill 2 along pathsh, i, and j,
respectively, as shown in Fig. 2~a!. WhenE,Ec , while two
of the subintervals are still defined by particles that follo
pathsh and i, the third one is now determined by particle

FIG. 1. A topological bifurcation in 2-DOF case: basic pat
composing UPOs~a! before and~b! after the bifurcation.

FIG. 2. Construction of the Cantor set.
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that go from hill 1 to hill 3 andbackto hill 1, following path
k, as shown in Fig. 2~b!. In the next step each one of th
three surviving subintervals will split into three smaller su
intervals, and so on. The splitting due to hill 3 is recorded
successive interactions with hills 1 and 2. This process
fines a Cantor set with three linear scales correspondin
the factors by which the intervals are reduced in each s
a'sh /s, b'si /s, and g'sj /s (E.Ec) or g'sk /s (E
,Ec), as shown in Fig. 2.

To obtain the dimensionD of the Cantor set, we employ
the following scaling argument. Suppose that the critical
ergy Ec , the distance between the hills, and the effect
radii of hills 1 and 2 atEc are of order unity. Near the
bifurcation, the deflection anglef due to hill 3 of the par-
ticles corresponding to the edges of the intervalssj andsk , is
smaller and greater than 90° forE*Ec andE&Ec , respec-
tively. In both cases,utanfu is of order unity insofar as the
angle u is close neither to 90° nor to 180° so that tan(p
2u);O(1) @see Figs. 1 and 2#. Thus, settingutanfu to be of
order unity provides an estimate of the width of the interv
sj andsk , and hence an estimate ofg. For concreteness, sa
the maximum of the potential hill 3~thebifurcationhill ! has
the following quadratic form:V5Ec@12(r /a)2#. A straight-
forward calculation@12# indicates that ifutanfu;O(1), then
the impact parameterb scales with the energy difference:b
'b0uE2Ecu[b0D, where b0 is proportional to utanfu.
Therefore, the Cantor set is determined by the followi
scaling factors:a, b, andg'g0D, wherea andb are con-
stants, andg0 is constant on each side of the bifurcatio
Under the approximation that there is a self-similarity in t
fractal structure, the dimensionD satisfies the following tran-
scendental equation@4#: aD1bD1g0

DDD51. For D and d
[D2D(Ec) small, to the lowest order, this equation reduc
to

@DD(Ec)#d/D(Ec)5C
d/D~Ec!

DD(Ec)
, ~2!

whereC is a positive constant. An asymptotic analysis of E
~2! leads to@13# our main scaling result~1! @14#.

We now present numerical confirmation for the scali
law ~1!. To resolve the cusp structure implied by Eq.~1! is a
highly nontrivial task. For numerical feasibility we thus co
sider a planar scattering system consisting of three nono
lapping potential hills located at the vertices (xi ,yi) ( i
51,2,3) of an isosceles triangle@6#. Each potential is repre
sented by the following function:Vi(x,y)5Ei@12(r i /ai)

2#
for r i<ai , wherer i5A(x2xi)

21(y2yi)
2, and the poten-

tial is zero elsewhere. The Hamiltonian is thus,H5upu2/2m
1V(x,y), wherep is the two-dimensional momentum vec
tor, and V(x,y)5( i 51

3 Vi(x,y). The advantage of utilizing
quadratic potential hills is that the motion of the partic
inside each potential can be solved exactly, making a hi
precision dimension calculation possible. In our numeri
experiment, we choose the following set of parameter valu
E15E2510, E351, a15a252, a351, (x1 ,y1)
52(x2 ,y2)5(4,0), (x3 ,y3)5(0,2), andm51. A topologi-
cal bifurcation thus occurs atEc51.0. We utilize the uncer-
1-2
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tainty algorithm@16# to compute the dimensionD of the set
of singularities in scattering functions. For illustrative pu
pose, we choose the function to be the scattering angl
infinity c[tan21(py /px) versus the location of the upwar
~initially ! particle on the horizontal line aty0524. The re-
sult is shown in Fig. 3, in which the cusp behavior is u
equivocal @17#. Linear least-squares fits between ln@D(E)
2D(Ec)# and lnuE2Ecu yield D(E)2D(Ec)5(0.093
60.005)(12E)0.2960.03 for E,Ec and D(E)2D(Ec)
5(0.1960.01)(E21)0.3160.03 for E.Ec , as shown by the
inset in Fig. 3. The scaling exponents for bothE.Ec and
E,Ec agree well with the theoretically predicted one, t
value of the dimension atEc , which we obtain numerically:
D(Ec)50.31460.005. In addition, the proportional factor i
Eq. ~1! is greater forE.Ec than for E,Ec , which is also
expected because, theoretically, this factor is proportiona
g0

D(Ec) and g0 is greater in the former case. Overall, o
computations lend strong credence to the validity of
scaling~1!.

Our argument for the scaling law~1! can in fact be ex-
tended to chaotic scattering in 3-DOF Hamiltonian syste
As an example, we consider four potential hills but they
now located in the three-dimensional physical space at
vertices of a tetrahedron, as schematically illustrated by
nar projection of the hills in Fig. 4~a! for E.Ec and in Fig.
4~b! for E,Ec . We focus on the dimensionD of the inter-
secting set between the stable manifold of the chaotic sa
and a two-dimensional surface of the phase space, whic
the dimension of the set of singularities in a scattering fu
tion on two variables. Arguments similar to those in t
2-DOF case can then be used to derive the scaling law~1!
near a topological bifurcation, with the understanding t
the dimension can, in principle, be either smaller or grea
than 1. When the radii of the potential hills are sma
D(Ec),1 can arise, in which casedD(E)/dE diverges atEc
and the dimension exhibits a cusp of the same nature as
in the 2-DOF case. IfD(Ec).1, dD(E)/dE goes continu-
ously to zero asE goes toEc , which implies that the dimen
sion should be smooth.

FIG. 3. Numerically obtained cusp scaling behavior in the fr
tal dimension about a topological bifurcation.
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Can this smooth behavior be expected for a topolog
bifurcation in 3-DOF scattering systems? To obtain an
swer, we note the defining characteristic of a topological
furcation: the topology of the UPOs is changed but from
standpoint of symbolic dynamics, no symbol is missing.
our 3-DOF case it means that, before the bifurcation,
UPOs corresponding to periodic sequences of the nine b
paths shown in Fig. 4~a! must actually exist, while after the
bifurcation, all those corresponding to sequences of the p
shown in Fig. 4~b! exist. In particular, the UPO represente
by the sequence$h, j % must exist whenE.Ec . Without loss
of generality, suppose that our 3-DOF system consists
three hard spheres of radiusR at the vertices of a regula
triangle with edge of unit length, and a smooth bifurcati
hill located on the symmetrical axis perpendicular to the c
ter of the triangle. In the inset of Fig. 4~a! is shown the
periodic orbit$h, j % for E.Ec in the limit E→Ec . A neces-
sary condition for the existence of this orbit, and hence
the occurrence of the topological bifurcation, is thenz
.90° @see Fig. 4~a!: the deflection angle due to hill 3 i
smaller than 90° whenE.Ec#. In the three-dimensiona
physical space, however, there is an additional geome
constraint: c.1/2A3, where c is the orthogonal distance
from the center of the bifurcation hill to the lines connecti
the hard spheres@Fig. 4~a!#. We obtain numerically that the
conditionsc.1/2A3 andz.90° are satisfied simultaneous
only for R,0.39. Numerical experiments indicate that,
this range of parameter values,D(Ec) is smaller than 1. It is
reasonable to assume that the same is valid when the
spheres are replaced by smooth potential hills. This imp
that for a generic topological bifurcation in 3-DOF scatteri
systems, the cusp behavior in Eq.~1! is always expected
@18#.

In summary, our scaling analysis and numerical compu
tions reveal a striking behavior in the fractal dimension
sociated with topological bifurcations in chaotic scatterin
the dimension typically exhibits a cusp as a function of t
bifurcation parameter, with a local minimum at th
bifurcation.

A.E.M. is sponsored by FAPESP. Y.C.L. is supported
AFOSR under Grant No. F49620-98-1-0400 and by NSF
der Grant No. PHY-9996454.

-

FIG. 4. A topological bifurcation in 3-DOF case: basic paths~a!
before and~b! after the bifurcation.
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