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A topological bifurcation in chaotic scattering is characterized by a sudden change in the topology of the
infinite set of unstable periodic orbits embedded in the underlying chaotic invariant set. We uncover a scaling
law for the fractal dimension of the chaotic set for such a bifurcation. Our analysis and numerical computations
in both two- and three-degrees-of-freedom systems suggest a striking feature associated with these subtle
bifurcations: the dimension typically exhibits a sharp, cusplike local minimum at the bifurcation.
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The development of nonlinear dynamics has led to im-of-freedom(DOF) [9] Hamiltonian systems. We focus on the
proved understanding of important physical processes, sudhactal dimension because of its importance in shaping physi-
as chaotic scatterinid,2]. A scattering process is chaotic if it cally measurable quantities such as scattering functions, and
exhibits a sensitive dependence on initial conditions in thdecause of the fact that most analytic scaling results associ-
sense that, a small change in the input variables before thé{€d with various routes to chaotic scattering concern fractal
scattering can result in a large change in some output vardimension but, to our knowledge, there has been none in the
ables after the scattering. Apparently, in a scattering proces§ontext of topological bifurcations. Due to the subtlety of a
every physical trajectory is unbounded, but chaos arises bdopelogical bifurcation, obtaining quantitative scaling laws,
cause of a bounded chaotic gehaotic saddlgin the scat- €ven numerically, is highly nontrivial. To be concrete, we
tering region where, for instance, the interaction betweeptale our main result in the context of.potentlal scattering,
particles and potential occurs, as in a potential scatterin ith the partlc_:le energi as the b|fur_cat|on param_eter. !_et
system. Chaotic saddles are nonattracting and, dynamicalfire P€ the critical energy value at which a topological bifur-

they lead to transient cha@3]. Chaotic scattering is thus the ation oceurs in the sense that, a class of infinite number of
physical manifestation of transient chaos in open Hamil-JPOS is destroyed and replaced by another. The principal

tonian systems, which occurs in a variety of physical Con_result of this paper is then that, near the topological bifurca-

texts[1]. tion, the fractal dimension of the set of singularities in any
An issue of fundamental importance in the study of cha.Scattering functionto be described belowscales with the

otic scattering is to understand how the scattering dynamicEnergy in the following way:
changes characteristically as a system parameter is varied. b
There are three distinct classes of bifurcations in chaotic D—D¢~[E—-E["e, @
scattering:(1) routes to chaotic scattering from regular scat-
tering, (2) metamorphic bifurcations in which the chaotic whereD_ is the dimension value at the bifurcation poifihe
saddle suddenly changes its characteristics,(antbpologi-  remarkable observation is that the dimension-versus-energy
cal bifurcations in which the topology of the chaotic saddlecurve exhibits a cusplike minimum at the bifurcatioNe
changes. Routes to chaotic scattering have been well docestablish Eq(1) by a scaling argument, and we provide nu-
mented, including abrupt bifurcatiof4,5] and saddle-center merical verification using a class of 2-DOF scattering sys-
bifurcation followed by a cascade of period-doubling bifur- tems. We also argue that the scaling law should hold in
cations[6]. There have also been efforts to study metamor3-DOF systems. Our result is interesting, as it represents the
phic bifurcations in chaotic scattering, such as cifigis To-  first, general, quantitative scaling result for topological bifur-
pological bifurcations, characterized by topological changesation of chaotic scattering.
in the subsets of infinite number of unstable periodic orbits To derive the scaling law1), we first consider 2-DOF
(UPO9 embedded in the chaotic saddles, on the other handotential scattering systems. Our idealized, albeit representa-
have not been well understood. One example of topologicdive, scattering system consists of three potential hills in the
bifurcation is the massive bifurcatig8]. This type of bifur-  plane, as shown in Fig. 1. The heigls, E,, andE; of
cations issubtlebut it is expected to be important in high hills 1, 2, and 3 satisf§; ,E,>E;. Assume that hill 3 has a
dimensions, as they can lead to distinct, physically observeircularly symmetric, quadratic maximum, and that it is close
able scattering phenomef@l. While there have been quan- to the line connecting hills 1 and 2 so that the angiie the
titative scaling results concerning both routes to chaotic scatriangle formed by the centers of all three hills is greater than
tering [4,10] and metamorphic bifurcation[7], the 90°, as shown in Fig.(&. When the particle energk is
understanding of topological bifurcations in chaotic scatterslightly aboveEs, a trapped particle can move back and forth
ing remains largely at the qualitative le\@l], particularly in ~ between hills 1 and 2 following three different paf6$: h, i,
high dimensiong9]. andj, as shown in Fig. (0. When the energy drops below

In this paper, we present a scaling law for the fractalEs, the path with greater deflection by crossing near the cen-
dimension of the chaotic saddle in a topological bifurcationter of hill 3, pathj, is destroyed because of the appearance of
that appears to be typical in both tw@] and three-degrees- a forbidden region around the center of hill 3, and is replaced
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that go from hill 1 to hill 3 andbackto hill 1, following path
E>E. (2) E<E, (b) k, as shown in Fig. @). In the next step each one of the
three surviving subintervals will split into three smaller sub-
intervals, and so on. The splitting due to hill 3 is recorded at
successive interactions with hills 1 and 2. This process de-
fines a Cantor set with three linear scales corresponding to
the factors by which the intervals are reduced in each step:
a~syls, B=si/s, and y~s;/s (E>E.) or y=~si/s (E
<E,), as shown in Fig. 2.

To obtain the dimensio® of the Cantor set, we employ
the following scaling argument. Suppose that the critical en-
ergy E., the distance between the hills, and the effective
radii of hills 1 and 2 atE. are of order unity. Near the
bifurcation, the deflection anglé due to hill 3 of the par-

by two pathsk, between hills 1 and 3 and between hills 2 andticles corresponding to the edges of the intergalandsy, is
3, as shown in Fig. (b). For E~Ej, the UPOs that form the Smaller and greater than 90° fei=E; andE<E_, respec-
skeleton of the chaotic saddle are thus composed of sdively. In both casesjtang| is of order unity insofar as the
quences of pathh, i, j, andk. A topological bifurcation{8] ~ angle ¢ is close neither to 90° nor to 180° so that tan(
occurs aE. = Es, at which the class of an infinite number of —¢)~0(1) [see Figs. 1 and]2Thus, settingtand| to be of
UPOs Containing path|s destroyed and rep|aced by anotherorder Unity prOVides an estimate of the width of the intervals
class of infinite number of UPOs that contain pakths s; ands,, and hence an estimate ¢f For concreteness, say
We focus on a fractal dimension that is phys|ca||y mostthe maximum of the potential hill (ihe bifurcation hl”) has
relevant: the dimensio of the set of singularities in a the following quadratic formv=E.[1—(r/a)?]. A straight-
scattering function. Suppose that we launch particles towarfprward calculatiorj12] indicates that iftan¢|~O(1), then
the scatterer from a line outside the scattering region anthe impact parametdy scales with the energy difference:
measure a dynamical variable characterizing the outgoing®PolE—E¢[=boA, where b, is proportional to|tang|.
particles after the scatterine.g., scattering angleas a Therefore, the Cantor set is determined by the following
function of a variable characterizing the incoming particlesscaling factorsaz, 8, andy~ y,A, wherea and g are con-
before the scatteringe.g., impact parameterDue to chaos, Stants, andy, is constant on each side of the bifurcation.
such a scattering function typically contains an infinite num-Under the approximation that there is a self-similarity in the
ber of singularities that constitute a fractal set, which is thefractal structure, the dimensid@nsatisfies the following tran-
set of intersecting points between the stable manifold of thecendental equatiof#]: aP+pBP+ yg’ADzl. ForA and 6
chaotic saddle and the lifé1]. Dynamically, the fractal set =D —D(E.) small, to the lowest order, this equation reduces
of singularities is constructed by successive interactions ofo
the particles with the potential hills. For example, consider
the intervals of the line corresponding to particles that are 5ID(Ey)
first deflected by hill 1, as shown in Fig. 2. Three subinter- [AD(E°)]5/D(E°)=CW.
vals of this interval are then deflected by the other hills, with AT
gaps between them corresponding to particles that are scat- _ . . .
tered to infinity right after the first interaction with hill 1. WhereCis a positive constant. An asymptotic analysis of Eg.
When E>E,, these three subintervals are defined by par{2) leads to[13] our main scaling resultl) [14]. ,
ticles that go from hill 1 to hill 2 along paths, i, and]j, We now present numerical conf|rmat|qn for the .scallng
respectively, as shown in Fig(@. WhenE<E,, while two 1@ (1). To resolve the cusp structure implied by Ef) is a
of the subintervals are still defined by particles that follow N'ghly nontrivial task. For numerical feasibility we thus con-

pathsh andi, the third one is now determined by particles SIder @ planar scattering system consisting of three nonover-
lapping potential hills located at the verticeg; {y;) (i
=1,2,3) of an isosceles trianglé]. Each potential is repre-
(b) sented by the following functionV;(x,y) =E;[1—(r;/a;)?]
for r;<a;, wherer;=(x—x;)*+(y—y;)?, and the poten-
tial is zero elsewhere. The Hamiltonian is thiks=|p|2/2m
+V(X,y), wherep is the two-dimensional momentum vec-
tor, andV(x,y)zEﬁzlvi(x,y). The advantage of utilizing
quadratic potential hills is that the motion of the particle
inside each potential can be solved exactly, making a high-
Sisig precision dimension calculation possible. In our numerical
experiment, we choose the following set of parameter values:
E1=E2=10, E3:1, a1:a2:2, 33:1, (Xl’yl)

=—(X2,Y2)=(4,0), (X3,y3)=(0,2), andm=1. A topologi-

FIG. 2. Construction of the Cantor set. cal bifurcation thus occurs &.=1.0. We utilize the uncer-

FIG. 1. A topological bifurcation in 2-DOF case: basic paths
composing UPOsa) before andb) after the bifurcation.

2
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FIG. 4. Atopological bifurcation in 3-DOF case: basic paifis
0.30 before andb) after the bifurcation.
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Can this smooth behavior be expected for a topological

FIG. 3. Numerically obtained cusp scaling behavior in the frac-Pifurcation in 3-DOF scattering systems? To obtain an an-
swer, we note the defining characteristic of a topological bi-
furcation: the topology of the UPOs is changed but from the
tainty algorithm[16] to compute the dimensiod of the set  standpoint of symbolic dynamics, no symbol is missing. In
of singularities in scattering functions. For illustrative pur- our 3-DOF case it means that, before the bifurcation, all
pose, we choose the function to be the scattering angle tdPOs corresponding to periodic sequences of the nine basic
infinity y=tan *(p,/p,) versus the location of the upward Ppaths shown in Fig. @ must actually exist, while after the
(initially) particle on the horizontal line at,= —4. The re-  bifurcation, all those corresponding to sequences of the paths
sult is shown in Fig. 3, in which the cusp behavior is un-Shown in Fig. 4b) exist. In particular, the UPO represented
equivocal [17]. Linear least-squares fits betweerfO(E) DY the sequencgh,j} must exist wherE>E.. Without loss
~D(E)] and IHE—E/] yield D(E)—D(E.)=(0.093 of generality, suppose thqt our 3-DOF system consists of
+0.005) (1 E)%2%003 for” E<E. and D(E)—D(E,) th_ree harq spheres of r:_’:ldIlESat the vertices of a_regulgr

= (0.19+ 0.01) E— 1)03008 for EC>EC, as shown by Cthe tr_|angle with edge of unit I_ength,. and a sm_ooth bifurcation
inset in Fig. 3. The scaling exponents for bdgtE, and hill located on the symmetrical axis perpendicular to the cen

, . : ter of the triangle. In the inset of Fig.(@ is shown the
E<E. agree well with the theoretically predicted one, theperiodic orbit{h,j} for E>E, in the limit E—E, . A neces-

value of the dimension &, which we obtain numerically: g5y condition for the existence of this orbit, and hence for
D(E.)=0.314=0.005. In addition, the proportional factor in he” gccurrence of the topological bifurcation, is thén
Eq. (1) is greater forE>E_ than forE<E;, which is also > 90° [see Fig. 4a): the deflection angle due to hill 3 is
expected because, theoretically, this factor is proportional tgmaller than 90° wherE>E_]. In the three-dimensional
yE(E°) and vy, is greater in the former case. Overall, our physical space, however, there is an additional geometric
computations lend strong credence to the validity of theconstraint:c>1/2\/3, wherec is the orthogonal distance
scaling(1). from the center of the bifurcation hill to the lines connecting
Our argument for the scaling layl) can in fact be ex- the hard sphered=ig. 4(a)]. We obtain numerically that the
tended to chaotic scattering in 3-DOF Hamiltonian systemsconditionsc>1/2y/3 and{>90° are satisfied simultaneously
As an example, we consider four potential hills but they areonly for R<0.39. Numerical experiments indicate that, in
now located in the three-dimensional physical space at thehis range of parameter valud(E,) is smaller than 1. It is
vertices of a tetrahedron, as schematically illustrated by plareasonable to assume that the same is valid when the hard
nar projection of the hills in Fig. @) for E>E; and in Fig.  spheres are replaced by smooth potential hills. This implies
4(b) for E<E.. We focus on the dimensioD of the inter-  that for a generic topological bifurcation in 3-DOF scattering
secting set between the stable manifold of the chaotic saddkystems, the cusp behavior in Ed) is always expected
and a two-dimensional surface of the phase space, which [4.8].
the dimension of the set of singularities in a scattering func- In summary, our scaling analysis and numerical computa-
tion on two variables. Arguments similar to those in thetions reveal a striking behavior in the fractal dimension as-
2-DOF case can then be used to derive the scaling(law sociated with topological bifurcations in chaotic scattering:
near a topological bifurcation, with the understanding thatthe dimension typically exhibits a cusp as a function of the
the dimension can, in principle, be either smaller or greatebifurcation parameter, with a local minimum at the
than 1. When the radii of the potential hills are small, bifurcation.
D(E.) <1 can arise, in which cagtD(E)/dE diverges aE.
and the dimension exhibits a cusp of the same nature as that

tal dimension about a topological bifurcation.

in the 2-DOF case. ID(E;)>1, dD(E)/dE goes continu- A.E.M. is sponsored by FAPESP. Y.C.L. is supported by
ously to zero a& goes toE., which implies that the dimen- AFOSR under Grant No. F49620-98-1-0400 and by NSF un-
sion should be smooth. der Grant No. PHY-9996454.
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